On Penalty and Gap Function Methods for Bilevel Equilibrium Problems

نویسندگان

  • Dinh Bui Van
  • Le Dung Muu
چکیده

We consider bilevel pseudomonotone equilibrium problems. We use a penalty function to convert a bilevel problem into one-level ones. We generalize a pseudo-∇-monotonicity concept from ∇monotonicity and prove that under pseudo-∇-monotonicity property any stationary point of a regularized gap function is a solution of the penalized equilibrium problem. As an application, we discuss a special case that arises from the Tikhonov regularization method for pseudomonotone equilibrium problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating Goal Programming, Taylor Series, Kuhn-Tucker Conditions, and Penalty Function Approaches to Solve Linear Fractional Bi-level Programming Problems

In this paper, we integrate goal programming (GP), Taylor Series, Kuhn-Tucker conditions and Penalty Function approaches to solve linear fractional bi-level programming (LFBLP)problems. As we know, the Taylor Series is having the property of transforming fractional functions to a polynomial. In the present article by Taylor Series we obtain polynomial objective functions which are equivalent...

متن کامل

A New Approach for Solving Fully Fuzzy Bilevel Linear Programming Problems

This paper addresses a type of fully fuzzy bilevel linear programming (FFBLP) wherein all the coefficients and decision variables in both the objective function and constraints are triangular fuzzy numbers. This paper proposes a new simple-structured, efficient method for FFBLP problems based on crisp bilevel programming that yields fuzzy optimal solutions with unconstraint variables and parame...

متن کامل

RESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE

In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

Bilevel programming model and solution method for mixed transportation network design problem

By handling the travel cost function artfully, the authors formulate the transportation mixed network design problem (MNDP) as a mixed-integer, nonlinear bilevel programming problem, in which the lower-level problem, comparing with that of conventional bilevel DNDP models, is not a side constrained user equilibrium assignment problem, but a standard user equilibrium assignment problem. Then, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011